Lecture 16 on Nov. 07 2013

In the last lecture, an index of zy with respect to a closed curve v has been introduced. Now we study some
properties of the index n(v, z9). Since zg keeps away from ~, we can find a tiny disk B(zp, €) so that B(zp,€)
has no intersection with . here B(zo, €) denotes the disk centered at zp with radius e. Clearly if € is small
enough, we have |z — w| > ¢* for all z in B(zp,€) and w on ~. ¢* is a positive constant. Choosing z an
arbitrary point in B(zg, €), we have
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By our assumption, we know that |w — z| > ¢* and |w — zg| > ¢*. Hence from the above estimate, we imply
that
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Therefore if z is very close to zg, equivalently if ¢ (the radius of B(zg,¢€) ) is very small, we have |n(v, z) —
n(7y, z0)| < 1/2. In light that n(v, z) and n(v, z) are all integers, we show that n(vy, z) = n(y, zo) must hold.
In other words, all points in B(z, €) share same index with respect to v. Given z; and z2 two points in C
and a continuous path [ connecting z; and zo, if the intersection of [ and ~y is empty, then we can cover [ by
a finite sequence of tiny balls. Meanwhile all points in each tiny disk share same index. Supposing we have
two tiny balls in the sequence say By and By, then By N By # () . otherwise [ is not continuous. all points in
B have same index, denoted by N; and all points in B, have same index denoted by No. But By N Ba # ().
Therefore Ny = Ns. In other words, if we can connect z; and zo by a continuous path [ whose intersection
with v is empty, then z; and 2o have same index.

Now we come back to the Cauchy integral formula. From the last lecture, we know that if n(y, z9) # 0,
then
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From the above arguments, choosing € small enough, then n(v, z) = n(y, zo) for all z in B(zp,¢). Hence by
Cauchy integral formula, we know that
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Moreover if s is small enough, we also have
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Taking s — 0, the right-hand side above converges to
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Hence we know that f is derivable at z and it holds that
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Inductively the higher order derivatives of f can also be calculated. it is the proposition in the following

Proposition 0.1. If f is analytic in A where A is a disk, then for any natural number k,
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Here v is a contour in A such that n(v, zp) # 0. z is any point in B(zo,€) with € small enough.

From Proposition 0.1, two cheap results can be easily obtained.

Theorem 0.2 (Liouville’s theorem). If f is analytic on C and |f(z)| < M for some M > 0 and all z in C,
then f must be a constant.

Proof. Fixing z in C and R large enough so that z is in B(0, R/2). Here B(0, R/2) is the ball centered at 0
with radius R/2. Then by Proposition 0.1, we know that
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Here the abosolute value of the index in Cauchy formula is 1 in that the index of z with respect to the circle
|z| = R must be 1 or —1. Using the above equality, we show that
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Noticing that z is in B(0, R/2), so for all w on |z| = R, |w — z| > R/2. Applying this estimate together with
the fact that |f| < M to the above inequality, we know that
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This shows that f/(z) = 0. Since z is arbitrary, therefore f’(z) = 0 for all z in C which tells us that f must
be a constant. O

The second theorem is Morera’s theorem. It gives us a way to go from continuity to analyticity.

Theorem 0.3 (Morera’s theorem). if f is continuous in a domain Q and for all v a closed curve in Q we

have
[ sraz=0.
.

then f must be analytic.

Proof. Using the condition in Theorem 0.3, we know that
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is well-defined. here zj is a fixed point in €, v(zo, 2) is a path in Q connecting zo and z. From the previous
arguments, we know that F(z) is analytic and f(z) = F'(z). Using Proposition 0.1, we know that F' can be
differentiated infinitely many times. So from the relationship f(z) = F’(z), we know that f must also be
differentiated infinitely many times. So f is analytic. O



