
Lecture 16 on Nov. 07 2013

In the last lecture, an index of z0 with respect to a closed curve γ has been introduced. Now we study some
properties of the index n(γ, z0). Since z0 keeps away from γ, we can find a tiny disk B(z0, ε) so that B(z0, ε)
has no intersection with γ. here B(z0, ε) denotes the disk centered at z0 with radius ε. Clearly if ε is small
enough, we have |z − w| ≥ c∗ for all z in B(z0, ε) and w on γ. c∗ is a positive constant. Choosing z an
arbitrary point in B(z0, ε), we have

|n(γ, z)− n(γ, z0)| =
1

2π

∣∣∣∣∫
γ

1

w − z
− 1

w − z0
dw

∣∣∣∣ =
|z − z0|

2π

∣∣∣∣∫
γ

1

(w − z)(w − z0)
dw

∣∣∣∣
≤ |z − z0|

2π

∫
γ

1

|w − z||w − z0|
|dw|.

By our assumption, we know that |w− z| ≥ c∗ and |w− z0| ≥ c∗. Hence from the above estimate, we imply
that

|n(γ, z)− n(γ, z0)| ≤ |z − z0|
2π(c∗)2

∫
γ

|dw| = length of γ

2π(c∗)2
|z − z0|.

Therefore if z is very close to z0, equivalently if ε (the radius of B(z0, ε) ) is very small, we have |n(γ, z) −
n(γ, z0)| < 1/2. In light that n(γ, z) and n(γ, z0) are all integers, we show that n(γ, z) = n(γ, z0) must hold.
In other words, all points in B(z0, ε) share same index with respect to γ. Given z1 and z2 two points in C
and a continuous path l connecting z1 and z2, if the intersection of l and γ is empty, then we can cover l by
a finite sequence of tiny balls. Meanwhile all points in each tiny disk share same index. Supposing we have
two tiny balls in the sequence say B1 and B2, then B1 ∩B2 6= ∅ . otherwise l is not continuous. all points in
B1 have same index, denoted by N1 and all points in B2 have same index denoted by N2. But B1 ∩B2 6= ∅.
Therefore N1 = N2. In other words, if we can connect z1 and z2 by a continuous path l whose intersection
with γ is empty, then z1 and z2 have same index.

Now we come back to the Cauchy integral formula. From the last lecture, we know that if n(γ, z0) 6= 0,
then

f(z0) =
1

2πin(γ, z0)

∫
γ

f(w)

w − z0
dw.

From the above arguments, choosing ε small enough, then n(γ, z) = n(γ, z0) for all z in B(z0, ε). Hence by
Cauchy integral formula, we know that

f(z) =
1

2πin(γ, z)

∫
γ

f(w)

w − z
dw =

1

2πin(γ, z0)

∫
γ

f(w)

w − z
dw.

Moreover if s is small enough, we also have

f(z + s) =
1

2πin(γ, z0)

∫
γ

f(w)

w − (z + s)
dw.

Therefore it holds that

f(z + s)− f(z)

s
=

1

2πin(γ, z0)

∫
γ

f(w)

(w − z − s)(w − z)
dw.

Taking s→ 0, the right-hand side above converges to

1

2πin(γ, z0)

∫
γ

f(w)

(w − z)2
dw.
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Hence we know that f is derivable at z and it holds that

f ′(z) =
1

2πin(γ, z0)

∫
γ

f(w)

(w − z)2
dw.

Inductively the higher order derivatives of f can also be calculated. it is the proposition in the following

Proposition 0.1. If f is analytic in ∆ where ∆ is a disk, then for any natural number k,

f (k)(z) =
k!

2πin(γ, z0)

∫
γ

f(w)

(w − z)k+1
dw.

Here γ is a contour in ∆ such that n(γ, z0) 6= 0. z is any point in B(z0, ε) with ε small enough.

From Proposition 0.1, two cheap results can be easily obtained.

Theorem 0.2 (Liouville’s theorem). If f is analytic on C and |f(z)| ≤M for some M > 0 and all z in C,
then f must be a constant.

Proof. Fixing z in C and R large enough so that z is in B(0, R/2). Here B(0, R/2) is the ball centered at 0
with radius R/2. Then by Proposition 0.1, we know that

|f ′(z)| = 1

2π

∣∣∣∣∣
∫
|z|=R

f(w)

(w − z)2
dw

∣∣∣∣∣ .
Here the abosolute value of the index in Cauchy formula is 1 in that the index of z with respect to the circle
|z| = R must be 1 or −1. Using the above equality, we show that

|f ′(z)| ≤ 1

2π

∫
|z|=R

|f(w)|
|w − z|2

|dw|.

Noticing that z is in B(0, R/2), so for all w on |z| = R, |w− z| ≥ R/2. Applying this estimate together with
the fact that |f | ≤M to the above inequality, we know that

|f ′(z)| ≤ 2M

π

1

R2

∫
|z|=R

|dw| = 2M

π

1

R2
2πR =

4M

R
−→ 0, as R→∞.

This shows that f ′(z) = 0. Since z is arbitrary, therefore f ′(z) = 0 for all z in C which tells us that f must
be a constant.

The second theorem is Morera’s theorem. It gives us a way to go from continuity to analyticity.

Theorem 0.3 (Morera’s theorem). if f is continuous in a domain Ω and for all γ a closed curve in Ω we
have ∫

γ

f(z) dz = 0,

then f must be analytic.

Proof. Using the condition in Theorem 0.3, we know that

F (z) =

∫
γ(z0,z)

f(w) dw

is well-defined. here z0 is a fixed point in Ω, γ(z0, z) is a path in Ω connecting z0 and z. From the previous
arguments, we know that F (z) is analytic and f(z) = F ′(z). Using Proposition 0.1, we know that F can be
differentiated infinitely many times. So from the relationship f(z) = F ′(z), we know that f must also be
differentiated infinitely many times. So f is analytic.
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